
Mining Points of Interest via Address Embeddings: An
Unsupervised Approach

Abhinav Ganesan

g.abhinav@swiggy.in

Bundl Technologies (Swiggy)

Bangalore, Karnataka, India

Anubhav Gupta
∗

anubhav@umd.edu

University of Maryland

College Park, Maryland, United States

Jose Mathew

jose.matthew@swiggy.in

Bundl Technologies (Swiggy)

Bangalore, Karnataka, India

ABSTRACT
Digital maps are commonly used across the globe for exploring

places that users are interested in, commonly referred to as points of

interest (PoI). In online food delivery platforms, PoIs could represent

any major private compounds where customers could order from

such as hospitals, residential complexes, office complexes, educa-

tional institutes and hostels. In this work, we propose an end-to-end

unsupervised system design for obtaining polygon representations

of PoIs (PoI polygons) from address locations and address texts.

We preprocess the address texts using locality names and generate

embeddings for the address texts using a deep learning-based archi-

tecture, viz. RoBERTa, trained on our internal address dataset. The

PoI candidates are identified by jointly clustering the anonymised

customer phone GPS locations (obtained during address onboard-

ing) and the embeddings of the address texts. The final list of PoI

polygons is obtained from these PoI candidates using novel post-

processing steps that involve density-based cluster refinement and

graph-based technique for cluster merging. This algorithm iden-

tified 74.8 % more PoIs than those obtained using the Mummidi-

Krumm baseline algorithm run on our internal dataset. We use

area-based precision and recall metrics to evaluate the performance

of the algorithm. The proposed algorithm achieves a median area

precision of 98 %, a median recall of 8 %, and a median F-score of

0.15. In order to improve the recall of the algorithmic polygons, we

post-process them using building footprint polygons from the Open-

StreetMap (OSM) database. The post-processing algorithm involves

reshaping the algorithmic polygon using intersecting polygons and

closed private roads from the OSM database, and accounting for

intersection with public roads on the OSM database. We achieve a

median area recall of 70 %, a median area precision of 69 %, and a me-

dian F-score of 0.69 on these post-processed polygons. The ground

truth polygons for the evaluation of the metrics were obtained using

manual validation of the algorithmic polygons obtained from the

Mummidi-Krumm baseline approach. These polygons are not used

to train the proposed algorithm pipeline, and hence, the algorithm

is unsupervised.

∗
This work was done when the author was at Bundl Technologies.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

LocalRec’21, November 2–5, 2021, Beijing, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9100-9/21/11. . . $15.00

https://doi.org/10.1145/3486183.3491002

CCS CONCEPTS
• Information Systems→ Information Retrieval; • Comput-
ing Methodologies→Machine Learning.

KEYWORDS
Points of interest, maps, address embeddings, location intelligence,

areas of interest, regions of interest, geospatial, deep learning.

ACM Reference Format:
Abhinav Ganesan, Anubhav Gupta, and Jose Mathew. 2021. Mining Points of

Interest via Address Embeddings: An Unsupervised Approach. In 5th ACM
SIGSPATIAL International Workshop on Location-Based Recommendations,
Geosocial Networks, and Geoadvertising (LocalRec’21), November 2–5, 2021,
Beijing, China. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3486183.3491002

1 INTRODUCTION
A "point of interest" (PoI) is defined as a geographical location

with simple associated metadata that could include a name, unique

address identifier, information about the building at the location

such as opening and closing hours, and other complex metadata

like three dimensional model of the building at the location [27].

PoIs include wide categories of public and private spaces such as

hospitals, shopping malls, restaurants, retail stores, residential com-

pounds, business establishments, educational institutions, sports

centres and parks. These PoIs are typically represented as a point

on a digital map or as a polygon indicating the boundary of the PoI.

We refer to polygon representations of PoIs as PoI polygons
1
. These

representations are generally useful for people to either explore

the locations of places they are interested in or navigate to these

places.

Vast repositories of open-source data on PoIs are available as Vol-

untary Geographic Information (VGI). VGI includes crowd-sourced

digital maps such as the OpenStreetMap (OSM) [13] and geotagged

photos on Flickr. The use of raw VGI data for enterprise applications

is limited by the absence of data quality guarantees. For example,

data quality issues can arise due to various reasons such as lack of

expertise of the volunteer in consistent use of terminologies (such as

‘road’ or ‘street’) [6] and absence of well-defined guidelines in coun-

tries like India where addresses can be diversely structured. VGI

however is still useful for extracting some intelligence attributes

for maps such as PoIs.

Ahern et al. [1] used K-means clustering [5] to cluster the loca-

tions on geotagged photos from Flickr, merged the clusters using

1
These are also known by other names like areas or regions of interest.

https://doi.org/10.1145/3486183.3491002
https://doi.org/10.1145/3486183.3491002
https://doi.org/10.1145/3486183.3491002


LocalRec’21, November 2–5, 2021, Beijing, China Abhinav Ganesan, Anubhav Gupta, and Jose Mathew

heuristics based on distance, and shortlisted clusters where the prod-

ucts of term-purity (TP)
2
and suitably redefined Term Frequency-

Inverse Document Frequency (TF-IDF) [24] of the tags exceeded a

threshold. The TP factor measures the fraction of points within a

cluster that contains a certain tag. The TF-IDF criterion measures

the fraction of points within a cluster that contains a tag as op-

posed to the appearance of the tag in the overall corpus. The work

by Mummidi and Krumm [22] used text annotated geographical

pushpins that were obtained by crowdsourcing for an early version

of Microsoft Bing maps. This work used hierarchical agglomera-

tive clustering [5] on the geographical locations and independent

thresholds on TF-IDF and TP of 𝑛-grams
3
for each cluster in order

to shortlist the PoIs. The extracted 𝑛-grams were declared to be the

PoI names.

The evaluation of the algorithmic output in [1] was qualitative,

and in [22], it was semi-quantitative. In [1], a digital user interface

(UI) namely, the World Explorer was built and participants were

recruited to evaluate the extracted PoI tags. The evaluation was

descriptive and oriented towards tourists’ perspectives of explor-

ing familiar and unfamiliar geographies in a city using the UI. In

[22], the evaluation was done by volunteers who marked if the ex-

tracted PoI location in a small geography of the city of Seattle was

recognisable either through the extracted name or the approximate

location. Approximately 80% of the PoIs identified were not found

to be recognised by the users. The algorithmic output was divided

into "control" and "test" based on whether the PoI was found in

a Yellow Pages database or not. Among the test outputs, the PoIs

were deemed correct in their approximate locations and names

76.8 % of the times. For the control outputs, the PoIs were deemed

correct 92.2 % of the times.

Mining PoI polygons using keyword search in Flickr’s geotags

was explored in [4] and evaluated using area-wise precision and

recall (defined in Section 5, proposed in [8]) for 24 PoIs each in Rome

and Paris. For instance, geotags with the keyword Colosseum with

a fixed set of spell-variants in European languages were chosen.

The locations of these geotags were iteratively filtered out using a

density criteria and the PoI polygon is obtained as a convex hull of

the remaining set of points at convergence. In [8], PoI polygonswere

mined from the Yellow pages dataset by correcting the locations

using a geocoding service and using Voronoi tessellations of OSM

polygons. The work however assumes that every location in the

Yellow pages dataset corresponds to a distinct PoI since the dataset

is a business directory that lists local businesses.

2 MOTIVATION AND CONTRIBUTIONS
Our work focuses on mining PoI polygons in the context of online

food ordering and delivery platforms. Online food deliveries hap-

pen in a hyperlocal setting with bounded delivery times, typically

under thirty minutes to deliver an order. Customers onboard their

addresses using their smartphones indicating the location where

they want the delivery to happen. Each address for every customer

2
The terminology of term purity was first used in [22] which was published at a later

date than [1]. However, we use the same terminology for simplicity since the criterion

used in [1] was conceptually similar to TP used in [22] except for considering unique

photographers who included the tag in the context of Flickr dataset.

3
An 𝑛-gram is defined as a sequence of 𝑛 consecutive words [19].

is assigned a unique identifier address_id. Each address_id is as-

sociated with an address text, which is the textual representation

of an address, and an address location which is the geographical

location of the address collected using GPS and represented as a

(latitude (lat), longitude (lng)) pair. Examples of address texts are

given in Table 1 in page 5. The PoIs, which are not necessarily

commonly visited public spaces, need to be identified from such

onboarded address texts and address locations. To reiterate, these

PoIs could represent residential complexes, office spaces, hostels,

and hospitals to name a few. At enterprise scale of data, these PoIs

could be densely located in a given geography, and hence, algorith-

mically locating these PoIs accurately becomes challenging even

with location data. Our dataset, use-case, and hence, the structure

of the address data is very different from the datasets used in the

works described in the previous section. Some of the challenges in

our dataset are listed below.

• Customer addresses in India are not structured homoge-

neously like in some developed western nations. In other

words, the customer addresses are not neatly partitioned

into their entities such as flat number and the PoI name. It’s

practically impossible to enforce this at the scale we operate.

• Customers do not use consistent spellings in English. A vast

majority of the PoI or locality names written in English are

rooted in Indic languages which are mostly phonetic while

English is not a phonetic language.

• It’s not known a priori if an address belongs to a PoI. For

instance, the address in the first row of Table 1 belongs to

a PoI (a residential apartment) while the addresses in the

other rows do not belong to PoIs, but this is not known until

we manually investigate the addresses. This is not the case

in [8] where it is known that the addresses in the dataset

belong to PoIs. The PoI names are also unknown a priori.

This is not the case in [4] which mines PoIs using PoI names

for keyword searches in Flickr’s geotags.

The challenge lies in mining PoIs from unstructured addresses that

are written with diverse spell variations in dense urban settings

where traditional approaches based on location-only clustering

or using Term Purity like in [22] have limitations. Location-only

clustering based on density has no address text intelligence and

are hard to tune in Indian settings where the addresses have high

variance in the geographical distribution. The approach in [22]

does not account for spell variations. For instance a PoI by name

HappiStay is written as Happy Stay, Happystay, and Happi stay.
These spell variations are best addressed through contextual text

embeddings (summarized in the next section).

Some use-cases that the PoI polygons serve in our context are

listed below.

(1) These boundaries serve us in batching orders for deliveries

for those originating from the same PoI around the same

time to ensure efficient deliveries.

(2) Knowledge of entry gates to the PoIs helps with efficient

last-mile routing. In other words, it helps to route our deliv-

ery partners to the closest entry gate for a customer order in

case of large PoIs with multiple entry gates. The PoI bound-

ary helps in algorithmically identifying entry gates to the



Mining Points of Interest via Address Embeddings: An Unsupervised Approach LocalRec’21, November 2–5, 2021, Beijing, China

PoIs by overlaying our Delivery Partners’ (DE) GPS trajec-

tories collected during order deliveries. Note that we are

not interested in building footprints themselves which are

the typically available polygons on the OSM database. We

want to draw a boundary that encompasses the whole pri-

vate access compound of a residential apartment or an office

building. Such boundaries are useful in identifying entry

gates to the PoIs.

(3) Knowledge of PoI boundary helps segment customers which

in turn can be used for targeted coupons and discounts.

The contributions and organisation of this work are as follows.

• The address texts are preprocessed using locality data ob-

tained from real estate websites in India. These address texts

are converted into a 300-dimensional contextual vectorial

representation (Add2Vec) using a deep learning-based model,

RoBERTa [17]. We concatenate this address embedding with

the address location given by (lat, lng) using a scaling factor

to form a feature vector for every address id. This feature

vector is used for hierarchical agglomerative clustering to

identify PoI candidates.

• We propose a cluster homogeneity criterion to shortlist the

clusters as PoI candidates. To the best of our knowledge, this

is the first work that uses locality name-based pre-processing

and joint clustering of location and address embeddings to

mine PoIs. The details appear in Section 4.3 and Section 4.5.1.

• The shortlisted PoI candidates are then post-processed in a

novel manner by eliminating noisy GPS points in the clusters,

merging clusters with similar names through a graph-based

technique, discarding redundant polygons, and merging in-

tersecting polygons. The details appear in Section 4.5.2-4.5.4.

• The metrics achieved by the proposed algorithm are listed

in Table 3 in Section 5 evaluated across nine major cities

in India. This is the first reported unsupervised algorithm

for mining PoIs run on a pan-India scale with published

metrics. Our algorithm also identified 74.7% more PoIs than

that identified by the Mummidi-Krumm baseline algorithm

in [22] run with relaxed parameters over our internal dataset.

• In order to improve the median F-score of the algorithmic

polygons, we propose polygon boundary correction using

building footprint polygons and roads data in the OSM data-

base in Section 6. This algorithmmakes use of OSM polygons

that intersect with the algorithmic polygon and expands the

boundary of the polygons if and when a "closed private

road" encompasses them. The algorithm also retains only

the largest polygon if the resulting polygon cuts across a

public road. The metrics achieved using OSM based polygon

correction are listed in Table 3. The algorithm can be retro-

fitted to any PoI mining algorithm that mines PoI polygons

using address location and text.

3 OTHER RELATED WORKS
In the context of mining intelligence from Indian addresses for

e-commerce applications, Ravindra et al. have dealt with problems

such as operational zone classification of addresses for last-mile

deliveries [2, 18], classification for randomly typed addresses [3],

and address clustering based on the similarity between addresses

[14]. The clustering algorithms for addresses proposed in [14] were

not targeted at any particular task such as mining PoIs.

In [18], the authors used state-of-the-art deep-learning-based ar-

chitecture called RoBERTa [17] for sub-zones classification task and

showed that this architecture outperforms other architectures for

classification based on Word2Vec [21] and Bi-LSTM [20] for embed-

ding the addresses. The sub-zones represent geographical regions

where the shipments meant for customers are batched at some

stage in the last-mile delivery chain in an e-commerce setting. We,

therefore, use RoBERTa as the architecture of choice in our work.

However, note that the goal of our work is not classification. The

authors also proposed novel pre-processing steps for the address

texts which we collectively refer to as vocabulary pre-preprocessing.
We adopt these pre-processing steps with minor modifications. In

the next section, we describe our algorithm for mining PoIs.

4 MINING POI POLYGONS: SYSTEM DESIGN
The end-to-end system design is presented in Fig. 1. Each address

is identified by its location and address text. The modules in the

system are explained in the subsequent sub-sections.

4.1 Vocabulary Pre-processing
This address text pre-processing step adopts the same steps for

preprocessing as listed in [18] with minor modifications. We call

this vocabulary pre-processing and use this to "standardise" the

addresses. Similar to [18], we partition the address corpus of ap-

proximately 6 million addresses across India into five geographical

zones, namely south, central, north, east, and west. The following

pre-processing steps are applied to the address texts within the

zones.

(1) Common text pre-processing: This step comprises of substi-

tuting punctuations and special characters by a single space,

replacing whitespaces by a single space, and lower-casing

all the alphabets.

(2) REGEX split: Split alphanumeric words into words containing

the only alphabet and numeric characters. This split can be

done using a regular expression (REGEX) pattern search.

Customers often miss out on including space between the

alphabet and numeric characters. These numeric characters

could represent floor numbers, flat numbers, or Postal Index

Number pin-codes. This step was not a part of preprocessing

in [18]. An example of this from our address corpus is the

city name and pin-code joined together as bangalore560066
which is split as bangalore 560066.

(3) Probabilistic word split: Here, the words are split based on

empirical probability of occurrence. A word is split into two

at any location if the product of probabilities of the indi-

vidual words is more than the probability of the compound

word. Here, we use the empirical probability of the words

as given in [2] instead of word count as given in [18] since

we found that empirical probability-based splits gave qual-

itatively better word splits. An example of this split in our

corpus is borewellroad split into borewell road.
(4) Bigram separation: The probabilistic word splitting step does

not account for spell variations that one encounters in the

Indian context. If a split word has insufficient support in the



LocalRec’21, November 2–5, 2021, Beijing, China Abhinav Ganesan, Anubhav Gupta, and Jose Mathew

Figure 1: System Design for mining PoI polygons from address texts and locations.

corpus but happens to be a spelling variant of a valid locality

or a PoI name, such word splits might get missed. There-

fore, the authors of [18] propose to construct a dictionary of

bigrams and those words which are close to these bigrams

in the sense of edit distance [16] and phonetic match
4
[23]

are split into these bigrams. For example, in our corpus, the

mistyped word Jaibheemanagr was replaced by the bigram

jaibheema nagar.
(5) Probabilistic word merge: This step is similar to probabilistic

word splitting. This is required because customers inadver-

tently include whitespaces within words when the regular

spelling does not include them. An example of this merging

is the bigram ram krishna merged to be ramkrishna.
Note that we do not include the spell-correction step from [18]

that involves edit distance and phonetic match between the word

pairs since we observed that it resulted in many false corrections

qualitatively. These false corrections were more pronounced in the

case of unigrams and much less in the case of bigram separation.

For example, the word bhuvana got corrected to bhavana. These
are completely different words and phonetic match doesn’t capture

the pronunciation difference between the words well in the Indian

context. A few examples of vocabulary pre-processed addresses

appear in Table 1 at the top of the next page.

4.2 Add2Vec Model training
The zone-wise vocabulary preprocessed address dataset is used

to train a masked language model (MLM) to learn the address

embeddings. We use the RoBERTa architecture [17]
5
which was

demonstrated to produce reasonable contextual embeddings for a

4
Two words are said to phonetically match if they sound similar. Algorithms for

phonetic matching do not necessarily perform well in the context of Indian addresses.

5
Description of the architecture is out of scope of this paper and we refer the readers

to the original paper for the same.

classification task in [18] for Indian addresses. No train-test data

split is used here since the focus of this work is not on generalisable

models on unseen data. The address texts are tokenised using Byte

Pair Encoding (BPE) [11] which comes packaged in a standard

HuggingFace implementation [28]. The address token sequences in

a batch are padded to the maximum length of the token sequences

in the batch or truncated to a length of max_position_embeddings.
The hyperparameters used are given below.

𝑣𝑜𝑐𝑎𝑏_𝑠𝑖𝑧𝑒 = 52000,𝑚𝑎𝑥_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 = 70,

𝑛𝑢𝑚_𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_ℎ𝑒𝑎𝑑𝑠 = 10, 𝑛𝑢𝑚_ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒 = 300,

𝑛𝑢𝑚_ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = 6, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 256, 𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ𝑠 = 10.

The address embeddings are generated from the last layer of dimen-

sion 𝑛𝑢𝑚_ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒 . The default values for 𝑛𝑢𝑚_ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒

and 𝑛𝑢𝑚_𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_ℎ𝑒𝑎𝑑𝑠 are equal to 768 and 12 respectively [17].

However, the default dimension of 768 makes the subsequent stages

of processing infeasible in terms of run-time for mining PoIs. There-

fore, we use a reduced dimension of 300, and since, the architec-

ture requires that the num_attention_heads needs to be a factor of

𝑛𝑢𝑚_ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒 , we use 𝑛𝑢𝑚_𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_ℎ𝑒𝑎𝑑𝑠 = 10. The value

chosen for max_position_embeddings is similar to the one used in

[18] since our addresses are of similar length.

4.3 Specialised Address Pre-processing
The RoBERTa model trained on the vocabulary pre-processed ad-

dresses is inferenced on the addresses which undergo specialised

pre-processing for mining PoIs. For online food delivery, the trained

model is also useful for other use-cases such as fraud detection and

address anomaly identification. For horizontal scalability in an

industrial setting, we do not train the model over address texts

that go through the complete pre-processing pipeline specialised

for mining PoIs. Instead, we train them on "standardised" address



Mining Points of Interest via Address Embeddings: An Unsupervised Approach LocalRec’21, November 2–5, 2021, Beijing, China

Table 1: Examples of vocabulary pre-processed addresses. The words that underwent one of the vocabulary pre-processing
steps (3)-(5) are highlighted in bold. The flat number identifiers in the addresses are anonymised as XXX.

Preprocessing step Raw address Vocabulary pre-processed address
Probabilistic flat No XXX,srivenkateswara Nilayam. flat no XXX sri venkateswara nilayam

word split Kukatpally. Hyderabad 500072 kukatpally hyderabad 500072

Bigram Separation No XXX N Block 18 th Street East Annanager Chennai no XXX n block 18 th street east anna nagar chennai
Probabilistic XXX, Padmaja Nagar , Vemana Colony, Chanda Nagar, XXX padmaja nagar vemana colony chandanagar
word merge Hyderabad, Telangana 500050, India hyderabad telangana 500050 india

texts where the standardisation is achieved through vocabulary

pre-processing.

The specialised preprocessing for address texts involve the fol-

lowing steps and some examples are presented in Table 2 (which

appears at the top of the page after next).

(1) Character pre-processing: This step comprises of removing nu-

meric characters and removing single alphabets. This helps

remove pin-codes, flat numbers, and floor numbers that do

not carry any information on the PoI names.

(2) Top-words and locality removal: Here, we remove top-10 fre-

quently occurring unigrams and (sub)locality names from

the address texts city-wise. The (sub)locality names are to-

kenised into unigrams and the unigrams are used as stop-

words in the pre-processing. In the city of Chennai in India,

the top-10 frequently occurring unigrams are ‘street’, ‘chen-

nai’, ‘nagar’, ‘road’, ‘block’, ‘th’, ‘st’, ‘floor’, ‘flat’, ‘no’. The

city-wise locality names are obtained from real-estate web-

sites, but these are not an exhaustive list. Not including this

pre-processing step resulted in 23% false polygons that rep-

resented localities even in the Mummidi-Krumm baseline

algorithm evaluated in a small geography in a top Indian

city.

4.4 Generating Address Embeddings
The specially preprocessed addresses are inferenced through the

trained RoBERTa model and the address embeddings are generated

as the mean of the hidden states of the last layer (a fully connected

layer) corresponding to the input tokens of the addresses. These

address embeddings are serialised in an HDF5 format [26] to be

consumed by the subsequent clustering step. The file can be ac-

cessed in a similar manner as arrays while the serialised data is not

stored on the RAM. This is essential because the PoIs need to be

mined from a large dataset of millions of addresses.

4.5 PoI Polygon Mining
The PoI polygon mining is a 4-step process as highlighted under

‘PoI Mining Module’ in Fig. 1. These steps are run parallely on

addresses whose locations are partitioned into L5 geohashes [25]

and subsequently into geographical bins. The geographical bins are

generated as 5x5 linearly spaced partitions between the minimum

and maximum latitude and longitude of the customer locations

present in the geohash so that each bin is roughly 1 km
2
. The PoI

mining module is described in the subsequent sub-sections and

Fig. 2 shows the algorithm in action on the next page. Some of

the largest residential and office PoIs are approximately of area

500 m
2
in India, but these are relatively too few in number. So,

the chosen bin size ensures that with high probability the PoIs

fall within the bins. All the parameters used in this section were

chosen by running the PoI mining module over approximately 9000

addresses in a bin in a large Indian city and qualitatively validating

the polygons obtained. We could run the algorithm at scale (for 6

million addresses as mentioned in Section 4.1) on a shared Spark

cluster in 45 minutes.

4.5.1 Generate homogeneous clusters. The PoI candidates are gen-
erated as homogeneous clusters as follows.

(1) Concatenate the normalised customer location (𝑙𝑎𝑡𝑛𝑜𝑟𝑚𝑖
,

𝑙𝑛𝑔𝑛𝑜𝑟𝑚𝑖
) and address embedding 𝑣𝑖 generated as in Sec-

tion 4.4 for every address id to be a feature vector 𝑓𝑖 =

(𝜆𝑙𝑎𝑡𝑛𝑜𝑟𝑚𝑖
, 𝜆𝑙𝑛𝑔𝑛𝑜𝑟𝑚𝑖

, 𝑣𝑖 ) with a location-scale of 𝜆 = 10,

for 𝑖 = 1, 2, · · · , 𝑁 where 𝑁 represents the number of ad-

dress ids in the geographical bin. The normalised locations

(𝑙𝑎𝑡𝑛𝑜𝑟𝑚𝑖
, 𝑙𝑛𝑔𝑛𝑜𝑟𝑚𝑖

) are mean 0, variance 1 normalised ver-

sions of the actual customer locations (𝑙𝑎𝑡𝑖 , 𝑙𝑛𝑔𝑖 ) within a

geographical bin. The latitudes and the longitudes are nor-

malised independently. We now perform hierarchical ag-

glomerative single linkage clustering [5] on the feature vec-

tors 𝑓𝑖 . The location scale is chosen by qualitatively evaluat-

ing the outputs in a geographical bin. Note that if 𝜆 is large,

the clustering "tends" to the location-only clustering in [22],

while if 𝜆 is small, the address embedding proximity between

the addresses dominates the clustering. In the former case,

the similarity between addresses is not taken into account,

and in the latter case, "falsely" close address embeddings

in the Euclidean space tend to get clustered together. Only

clusters containing at least 10 points are retained.

(2) Homogeneous clusters are obtained as clusters where ad-

dress embeddings of 90 % of the points in the clusters have

a cosine distance of at least 0.9 with the median centroid

address embedding of the cluster. The median centroid em-

bedding of the cluster is defined to be the coordinate-wise

median of the address embeddings of all the points within

the cluster.

(3) Redundant homogeneous children clusters are discarded, i.e.,

only homogeneous clusters at the top of the agglomeration

are retained and all the children clusters that also cleared

the homogeneity checks mentioned above are discarded.

Note: It is possible that addresses that don’t belong to the same

PoI pass the address homogeneity check because the address em-

beddings end up being similar due to common locality names or

relatively common names like ‘floor’ or ‘ground’ despite choosing



LocalRec’21, November 2–5, 2021, Beijing, China Abhinav Ganesan, Anubhav Gupta, and Jose Mathew

(a) Generating homogeneous clusters. (b) DBSCAN on homogeneous clusters.

(c) Merging homonymous clusters. (d) Convex hull

(e) Substantially Intersecting Polygons (f) Merge substantially intersecting polygons

Figure 2: An illustration of the PoI mining algorithm. The red polygon indicates the ground truth PoI polygon. The highlighted
yellow points in (a) indicates points within a single homogeneous cluster. The homogeneous cluster is split into multiple
clusters (the blue points in the red polygon that appear clustered) by DBSCAN and noisy locations are discarded as shown in (b).
The cluster highlighted in (b) is obtained from the blue circled set of points in (a). Homonymous cluster merge indicated by the
points highlighted in yellow is shown in (c). The split clusters in (b) were identified to have the same high confidence names,
and hence, got merged. The convex hull of the merged cluster is shown in (d). An example of a small polygon substantially
intersecting with a big polygon appears in (e) and the convex hull of the two polygons is shown in (f).



Mining Points of Interest via Address Embeddings: An Unsupervised Approach LocalRec’21, November 2–5, 2021, Beijing, China

Table 2: This table illustrates examples of specialised pre-processing of addresses. In the first example, the unigrams ‘floor’,
‘street’ and ‘chennai’ are eliminated due to top-words filtering, and the shortened pincode ‘28’ is removed due to character
pre-processing. The unigram ‘mandaveli’ indicates a locality name that is not removed because it is not present in our locality
list. In the second example, the (sub)locality unigrams ‘indiranagar’ and ‘adyar’ are eliminated during the locality pre-processing
step, and the unigrams ‘st’ and ‘chennai’ are removed using the top-words pre-processing step. The anonymised numbers XX
are eliminated in the character pre-processing step.

Vocabulary pre-processed address Specialized pre-processed address
XX navins lakshmi ram apartment ground floor navins lakshmi ram apartment ground

thiruvengadam street mandaveli chennai 28 thiruvengadam mandaveli

XX sudsun shevroy apts 1 st cross street sudsun shevroy apts cross

indiranagar adyar chennai 600020

a high cosine similarity threshold. It also remains to be explored

if training the Add2Vec itself on the preprocessed addresses does

better in such cases.

4.5.2 Splitting clusters and GPS noise clean up using DBSCAN. The
input into this step is the set of PoI candidate clusters from the

previous sub-section and the customer locations that constitute

these clusters. Each PoI candidate cluster is either discarded or

split up into multiple candidate clusters or retained as it is at the

end of this step of processing. The noisy GPS locations result in

misleading PoI boundaries and this step cleans up the noise us-

ing density-based clustering namely DBSCAN [10]. This step also

serves the dual purpose of splitting up the points that were falsely

clustered together into a single PoI candidate cluster. DBSCAN

uses a point density check-in finding at least 𝑛𝑢𝑚_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 = 5

address locations within a neighbourhood of 𝜖 = 10𝑚. If a customer

location does not have sufficiently many neighbours, the location

is discarded as noise. A cluster is grown by recursively scanning

the points for dense neighbours and scanning the neighbours for

further dense neighbours and so on. A new cluster is formed at a

point that is not in the dense neighbourhood of the points in the

earlier clusters. There are several prior works that use DBSCAN or

its variants for extracting the PoIs themselves [15]
6
. However, here

we use DBSCAN as a post-processing step.

4.5.3 Merging homonymous clusters. Splitting the PoI candidate
clusters in the previous step results in splitting some genuine sub-

PoIs (like towers) within the same PoI (like residential complexes).

This step generates high confidence names for PoI candidate clus-

ters from the previous step, if such high confidence names can be

extracted, and merges the clusters with similar high confidence

names with minor spell variations which is captured by edit dis-

tance. The clusters with similar high confidence names are referred

to as homonymous clusters. The steps involved are listed below.

(1) Generate n-grams for 𝑛 = 2, 3, 4 from the list of addresses

that are present in each PoI candidate cluster.

(2) Classify the clusters into ones with high confidence names

and low confidence names, namely high confidence name

clusters (HCNC), and low confidence name clusters (LCNC).

High confidence names are the n-grams that are present

in at least 70 % of the addresses in the cluster. There could

6
We refer the reader to [15] for a comprehensive overview of DBSCAN based

algorithms.

be multiple high confidence names for a given cluster. The

other clusters are classified as LCNC.

(3) For HCNCs, form a graph with the clusters as the nodes.

Nodes have an edge between them iff there is a common

high confidence name between the clusters up to an edit

distance of one (e.g. ‘mangalya suryodaya’ and ‘maangalya
suryodaya’ ) and distance between the cluster centroids is

less than a threshold of 100 m.

(4) Run depth-first search (DFS) [7] to identify connected com-

ponents in the above graph. Merge the connected component

HCNCs into a single cluster.

(5) The merged HCNCs, the HCNCs that are not merged, and

the LCNCs are passed on to the next step.

4.5.4 Post processing on PoI polygons. This step comprises gener-

ating the polygon representation of the PoIs, discarding redundant

polygons, and merging intersecting polygons. More specifically,

the steps are listed below.

(1) The PoI polygons are generated as the convex hull of the

locations contained within the clusters from the previous

step.

(2) Embedded polygons are discarded, i.e., those which are com-

pletely contained within the others are discarded. Note that

this is also partially achieved by discarding children clusters

in Section 4.5.1. However, there might still be clusters that

aren’t necessarily parent clusters, but in the polygon repre-

sentation, they might contain polygons from other clusters.

This can happen due to differences in the way addresses are

written and consequently don’t get clustered in a parent-

child hierarchy in the Euclidean space.

(3) Merge intersecting polygons if, at least one of the inter-

secting polygons have a 70 % area overlap with the other

polygon. It might happen that there are multiple such in-

tersecting pairs with shared polygon candidates. To handle

these cases, this step requires a little more sophistication

which is described below.

(4) Form a graph with the polygons as vertices. Edges are drawn

between these vertices if they intersect and at least one of

the intersecting polygons have a 70 % area overlap with the

other polygon. We run DFS to get connected components

in this graph. These connected components are merged by

computing the convex hull of the connected components.



LocalRec’21, November 2–5, 2021, Beijing, China Abhinav Ganesan, Anubhav Gupta, and Jose Mathew

Note that we merge polygons only if they intersect substantially.

This is because, in dense urban geographies in India where small

buildings are close to each other, a significant number of noisy

customer locations spill over to the adjacent buildings.

5 EVALUATION OF THE ALGORITHM
We use the following area based evaluation metrics [8].

Area Precision =
Area(P𝐴 ∩ P𝐺 )

𝐴𝑟𝑒𝑎(P𝐴)
,

Area Recall =
Area(P𝐴 ∩ P𝐺 )

𝐴𝑟𝑒𝑎(P𝐺 )
,

where P𝐴 and P𝐺 represent the proposed algorithmic and ground

truth PoI polygons, and only the polygon pairs with a non-zero

intersection area are used for the metric computation. We run the

Mummidi-Krumm algorithm on our data with reduced thresholds

of TP=0.7, TF-IDF= 0.1, and the number of points per cluster set to

15 to generate PoI polygons. These thresholds were relaxed com-

pared to the thresholds TP=0.9 and TF-IDF= 0.9 used in [22]
7
to

enhance the coverage of polygons (i.e., the number of polygons).

The polygons were post-processed to merge polygons with the

same name since we used a low TF-IDF threshold. The boundaries

of the polygons were manually corrected using satellite imagery to

fit the actual boundary of the PoI. Also, only 72% of these polygons

were found to represent valid PoIs. The rest of them turned out

to be polygons containing locality names or street names. These

manually validated polygons are used as ground truth
8
to evaluate

the proposed algorithm in this paper. The proposed algorithm iden-

tified 74.8% more PoIs than that identified by the Mummidi-Krumm

baseline algorithm and 67.5% of the ground truth polygons are

identified by the proposed algorithm. The cumulative distribution

function (CDF) of area precision and area recall of pairs of intersect-

ing algorithmic and ground truth PoI polygons are presented in Fig.

4. The median area precision is 98.7% and the median area recall

is 8.2%. This means that 50% of the intersecting algorithmic poly-

gons lie well within the ground truth polygons and do not cover

the ground truth polygons completely. For better understanding,

examples of high precision and low recall, and low precision and

high recall are presented in Fig. 3. The median F-score (defined in

Table 3) is given by 0.15. These results along with the comparison

against the metrics for the baseline polygons are summarized in

Table 3 (in the next page). In summary, the median F-scores of the

proposed algorithm and the baseline algorithm are similar, but the

proposed algorithm identifies 74.8% more PoIs than the baseline

algorithm.

6 POLYGON CORRECTION USING OSM
BUILDING FOOTPRINTS AND ROADS

Improving the recall without degrading the precision of the poly-

gons reduces the manual validation time. We only present the basic

idea here through Algorithm 1 and 2 and briefly explain them be-

low. A detailed flowchart along with examples of the algorithms

7
We reiterate that the work in [22] focussed on a specific sub-region of Seattle and are

not evaluated on Indian addresses.

8
The total number of these polygons is a few tens of thousands.

Figure 3: The first example where the algorithmic polygon is
contained well within the ground truth polygon represents
a case of high precision and low recall. The second example
where the algorithmic polygon substantially leaks out of the
ground truth polygon, but substantially overlaps with the
ground truth polygon represents a case of low precision and
high recall.

in action is relegated to Appendix A in a full ArXiv version of this

paper [12] for lack of space.

Algorithm 1 Pruning polygons using public roads

1: procedure prune_polygon_via_highway(𝑝𝑜𝑙𝑦𝑔𝑜𝑛)
2: 𝑑 ←𝑚𝑎𝑥 (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 2 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑛 𝑝𝑜𝑙𝑦𝑔𝑜𝑛)
3: 𝑟𝑜𝑎𝑑𝑠 ←

𝑂𝑆𝑀 𝑛𝑜𝑛-𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑟𝑜𝑎𝑑𝑠 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑝𝑜𝑙𝑦𝑔𝑜𝑛
4: for 𝑟𝑜𝑎𝑑 in 𝑟𝑜𝑎𝑑𝑠 do
5: 𝑙𝑒𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜 𝑓 𝑟𝑜𝑎𝑑

6: if 𝑟𝑜𝑎𝑑 ∈ 𝑃𝑢𝑏𝑙𝑖𝑐 𝑅𝑜𝑎𝑑𝑠 or 𝑙𝑒𝑛 ≥ 2 ∗ 𝑑 then
7: 𝑠𝑢𝑏𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝑠 ←𝑠𝑝𝑙𝑖𝑡 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 𝑖𝑛𝑡𝑜 𝑝𝑎𝑟𝑡𝑠 𝑏𝑦 𝑟𝑜𝑎𝑑

8: 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 ← 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑠𝑢𝑏-𝑝𝑜𝑙𝑦𝑔𝑜𝑛

9: return 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 ⊲ The pruned polygon

Algorithm 2 Correcting polygons using intersecting and encom-

passing private and public roads

1: procedure correct_polygon_via_highway(𝑝𝑜𝑙𝑦𝑔𝑜𝑛)
2: 𝑟𝑜𝑎𝑑𝑠 ← 𝑂𝑆𝑀 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑟𝑜𝑎𝑑𝑠 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑝𝑜𝑙𝑦𝑔𝑜𝑛

3: 𝑟𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝑠 ← 𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑖𝑧𝑒 (𝑟𝑜𝑎𝑑𝑠)
4: for roadPolygon in roadPolygons do
5: if (𝑟𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑔𝑜𝑛 ⊇ 𝑝𝑜𝑙𝑦𝑔𝑜𝑛) and

(𝑟𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑔𝑜𝑛 ∈ 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑅𝑜𝑎𝑑𝑠) and
(𝑎𝑟𝑒𝑎(𝑟𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑔𝑜𝑛) ≤ 1.5 ∗ 𝑎𝑟𝑒𝑎(𝑝𝑜𝑙𝑦𝑔𝑜𝑛)) then

6: 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 ← 𝑟𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑔𝑜𝑛

7: else if (𝑟𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑔𝑜𝑛 ∈ 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑅𝑜𝑎𝑑𝑠) and
(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑝𝑜𝑙𝑦𝑔𝑜𝑛, 𝑟𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑔𝑜𝑛) ≥

0.2 ∗ 𝑎𝑟𝑒𝑎(𝑝𝑜𝑙𝑦𝑔𝑜𝑛)) then
8: 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 ← 𝑈𝑛𝑖𝑜𝑛(𝑝𝑜𝑙𝑦𝑔𝑜𝑛, 𝑟𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑔𝑜𝑛)
9: else if 𝑟𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑔𝑜𝑛 ∈ 𝑃𝑢𝑏𝑙𝑖𝑐 𝑅𝑜𝑎𝑑𝑠 then
10: if 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (𝑝𝑜𝑙𝑦𝑔𝑜𝑛, 𝑟𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑔𝑜𝑛) ≥

0.5 ∗ 𝑎𝑟𝑒𝑎(𝑝𝑜𝑙𝑦𝑔𝑜𝑛) then
11: 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 ←

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑝𝑜𝑙𝑦𝑔𝑜𝑛, 𝑟𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑔𝑜𝑛)
12: else
13: 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 ← 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 − 𝑟𝑜𝑎𝑑𝑃𝑜𝑙𝑦𝑔𝑜𝑛

14: return 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 ⊲ The corrected polygon

The basic idea is to correct the algorithmic polygons using

intersecting building footprint polygons on the OSM database.



Mining Points of Interest via Address Embeddings: An Unsupervised Approach LocalRec’21, November 2–5, 2021, Beijing, China

Table 3: Metrics of algorithmic polygons and OSM corrected polygons compared with that for the Mummidi-Krumm algorithm.

Metrics Mummidi-Krumm OSM Corrected PoI Polygons from OSM Corrected Proposed

Baseline PoI Polygons Baseline PoI Polygons Proposed Mining Algorithm Algorithmic Polygons

Median area precision (𝑃 ) 80.7% 68% 98.7% 69%

Median area recall (𝑅) 9.6% 85% 8.2% 70%

Median F-score
2

1

𝑃
+ 1

𝑅

0.17 0.76 0.15 0.69

Number of PoIs 𝑥 0.67𝑥 𝑦 = 1.74𝑥 0.55𝑦

(a) CDF of area precision. (b) CDF of area recall.

Figure 4: A CDF value of 𝑦 represents the empirical probability of precision or recall values being at most a given value 𝑥 ,
i.e., 𝑦=probability(𝑋 <= 𝑥). The median value is obtained at 𝑦 = 0.5. With OSM based polygon correction, the recall CDF curve
shifts substantially to the right (indicating improvement) and the precision CDF curve shifts relatively marginally to the left
(indicating degradation) compared to the CDF curve for raw algorithmic polygons.

Note that a polygon with 𝑁 vertices is specified as a sequence

of (𝑙𝑎𝑡, 𝑙𝑛𝑔) pairs [(𝑙𝑎𝑡1, 𝑙𝑛𝑔1), · · · , (𝑙𝑎𝑡𝑁 , 𝑙𝑛𝑔𝑁 ), (𝑙𝑎𝑡𝑁+1, 𝑙𝑛𝑔𝑁+1)],
where (𝑙𝑎𝑡1, 𝑙𝑛𝑔1) = (𝑙𝑎𝑡𝑁+1, 𝑙𝑛𝑔𝑁+1). However, the OSM poly-

gons are sometimes incorrectly specified as a wrong sequence of

(𝑙𝑎𝑡, 𝑙𝑛𝑔) pairs. To account for such cases, we take the envelope of

the sequence of (𝑙𝑎𝑡, 𝑙𝑛𝑔) pairs using 𝛼-shape [9].
The algorithmic polygons leak onto public roads in cases where

customers mark their locations outside the gate of the PoI or due

to noise in the customer locations or points on either side of a road

getting clustered together. Therefore, in cases where a public road

cuts across an algorithmic polygon, we retain only the largest poly-

gon on either side of the public road (prune_polygon_via_highway

presented in Algorithm 1). It must be noted however that there is

no foolproof classification of private and public roads on OSM, and

since the data is crowdsourced they are also error-prone. Therefore,

we split the polygon cutting across a road (marked public or not) if

the road is substantially long (line 6, Algorithm 1). In the case of a

large PoI, internal roads form a closed loop around the PoI and such

a loop is better representative of the boundary of the PoI. Therefore,

we also make use of "closed private roads" to correct the boundaries

of the algorithmic polygons (correct_polygon_via_highway pre-

sented in Algorithm 2). The highway tags on OSM used as private

and public road proxies are specified in Table 4.

As shown in Fig. 4, the median area recall metric improves sub-

stantially to 70% with a degradation in the median area precision

which is equal to 69%, and the median F-score is given by 0.69. A

Table 4: Highway tag proxies for public and private roads on
OSM.

Road Highway Tag Proxy
Private ‘service’, ‘unclassified’, ‘footway’, ‘tertiary’, ‘path’,

‘pedestrian’, ‘track’

Public ‘primary’, ‘secondary’, ‘trunk’, ‘motorway’,

‘primary_link’, ‘secondary_link’, ‘trunk_link’,

‘motorway_link’, ‘raceway’, ’bridleway’, ‘escape’,

‘bus_guideway’

similar substantial improvement is also observed with OSM poly-

gon correction applied on the baseline polygons as shown in Table 3.

However, note from the last row in Table 3 that 45% of the proposed

algorithmic polygons are not present on OSM.

7 DISCUSSION
The apparent degradation in precision after OSM based polygon

correction happens mainly due to ground truth polygons having

marginal overlap with the neighbouring OSM building footprint

polygons (belonging to a different PoI). An example is presented in

Appendix B of [12]. This happens because the manually validated

polygons are fit on satellite imagery taken at oblique angles and

even the OSM polygons are prone to marginal errors.



LocalRec’21, November 2–5, 2021, Beijing, China Abhinav Ganesan, Anubhav Gupta, and Jose Mathew

Some top causes for low recall of the PoI mining algorithm are

discussed below. The address locations in our dataset do not span

the area of the PoI polygon. This is either due to the choice of

the dataset itself (which was chosen by high order volumes per

𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑖𝑑) or due to only a few customers within the PoI being

registered on the platform. The algorithm misses the inclusion of

some addresses belonging to the same PoI within the homogeneous

clusters. The RoBERTa embeddings are not specifically optimised

for similar embeddings for addresses within the same PoIs. They are

generated from a model trained as a masked language model (MLM)

that predicts a token in the address given the context tokens in the

same address. This is very different from the end task we are looking

at. Though this learns contextual embeddings, the context is not

necessarily tied up to predicting PoIs. In other words, the address

embeddings for the addresses within the PoIs aren’t particularly

optimised for the choice of cosine distance metric used in Section

4.5.1. A representative example of such a case is the pre-processed

address ‘polycab india limited unit godrej genesis’ not included in

the homogeneous cluster containing the pre-processed addresses

[‘godrej genesis building’, ’futures first godrej genesis building ep gp
opp to syndicate bank sector sa’, ’futures first godrej genesis’ ].

Though the DBSCAN step splits up some homogeneous clusters

falsely representing the PoI candidates, some valid sub-clusters

belonging to the same PoI also are split up. They do not get merged

in the homonymous merge step because these sub-clusters do not

have a high confidence name.

8 CONCLUSION
Mining PoI polygons from address texts and address locations was

achieved by jointly clustering the locations and the address embed-

dings through hierarchical clustering using the Euclidean distance

metric. The PoI candidates were identified through cosine distance

similarity between the address embeddings within the cluster and

the centroid address embedding of the cluster. However, note that

the address embeddings generated using RoBERTa are not particu-

larly trained to optimise for Euclidean distance or cosine distance

metrics between addresses within the same PoI. This paper however

shows through empirical studies that such an unsupervised system

design is still significantly useful and offers better coverage than

the Mummidi-Krumm baseline algorithm evaluated on our internal

dataset. We believe that a supervised approach where the address

embeddings are trained to optimise a given distance metric for

addresses within the same PoI would achieve a better recall metric

and will be the focus of our future work. We also proposed an OSM

building footprint based post-processing algorithm that can be used

with any PoI mining algorithm. We used it to specifically improve

the recall. We however note that the metrics are only directionally

indicative. An exact validation of the output polygons will have to

be done manually.

REFERENCES
[1] Shane Ahern, Mor Naaman, Rahul Nair, and Jeannie Hui-I Yang. 2007. World

explorer: visualizing aggregate data from unstructured text in geo-referenced

collections. In Proceedings of the 7th ACM/IEEE-CS joint conference on Digital
libraries. 1–10.

[2] T. Ravindra Babu, Abhranil Chatterjee, Shivram Khandeparker, A. Vamsi Subhash,

and Sawan Gupta. 2015. Geographical address classification without using geolo-

cation coordinates. In Proceedings of the 9th Workshop on Geographic Information

Retrieval, GIR 2015, Paris, France, November 26-27, 2015. ACM, 8:1–8:10.

[3] T. Ravindra Babu and Vishal Kakkar. 2017. Address Fraud: Monkey Typed

Address Classification for e-Commerce Applications. In Proceedings of the SIGIR
2017 Workshop On eCommerce co-located with the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, eCOM@SIGIR
2017, Tokyo, Japan, August 11, 2017 (CEUR Workshop Proceedings, Vol. 2311).

[4] Loris Belcastro, Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. 2018. G-

RoI: automatic region-of-interest detection driven by geotagged social media

data. ACM Transactions on Knowledge Discovery from Data (TKDD) 12, 3 (2018),
1–22.

[5] Christopher M Bishop. 2006. Pattern recognition and machine learning. Springer.
[6] Michael Brown, Sarah Sharples, Jenny Harding, Christopher J Parker, Nick Bear-

man, Martin Maguire, David Forrest, Muki Haklay, and Mike Jackson. 2013.

Usability of geographic information: current challenges and future directions.

Applied ergonomics 44, 6 (2013), 855–865.
[7] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.

Introduction to algorithms. MIT press.

[8] Victor de Graaff, Rolf A de By, Maurice van Keulen, and Jan Flokstra. 2013.

Point of interest to region of interest conversion. In Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems. 388–391.

[9] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. 1983. On the shape of a set of

points in the plane. IEEE Transactions on Information Theory 29, 4 (1983), 551–559.

https://doi.org/10.1109/TIT.1983.1056714

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-

based algorithm for discovering clusters in large spatial databases with noise.. In

Kdd, Vol. 96. 226–231.
[11] Philip Gage. 1994. A new algorithm for data compression. C Users Journal 12, 2

(1994), 23–38.

[12] Abhinav Ganesan, Anubhav Gupta, and Jose Mathew. 2021. Mining Points of

Interest via Address Embeddings: An Unsupervised Approach. arXiv preprint
arXiv:2109.04467 (2021).

[13] Mordechai Haklay and Patrick Weber. 2008. Openstreetmap: User-generated

street maps. IEEE Pervasive computing 7, 4 (2008), 12–18.

[14] Vishal Kakkar and T. Ravindra Babu. 2018. Address Clustering for e-Commerce

Applications. In The SIGIR 2018 Workshop On eCommerce co-located with the 41st
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2018), Ann Arbor, Michigan, USA, July 12, 2018 (CEUR Workshop
Proceedings, Vol. 2319).

[15] Chiao-Ling Kuo, Ta-Chien Chan, I Fan, Alexander Zipf, et al. 2018. Efficient

method for POI/ROI discovery using Flickr geotagged photos. ISPRS International
Journal of Geo-Information 7, 3 (2018), 121.

[16] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,

insertions, and reversals. In Soviet physics doklady, Vol. 10. Soviet Union, 707–
710.

[17] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A

robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[18] Shreyas Mangalgi, Lakshya Kumar, and Ravindra Babu Tallamraju. 2020. Deep

Contextual Embeddings for Address Classification in E-commerce. arXiv preprint
arXiv:2007.03020 (2020).

[19] Christopher Manning and Hinrich Schutze. 1999. Foundations of statistical natural
language processing. MIT press.

[20] Oren Melamud, Jacob Goldberger, and Ido Dagan. 2016. context2vec: Learning

generic context embedding with bidirectional lstm. In Proceedings of the 20th
SIGNLL conference on computational natural language learning. 51–61.

[21] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Esti-

mation of Word Representations in Vector Space. In 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings.

[22] Lakshmi Narayana Mummidi and John Krumm. 2008. Discovering points of

interest from users’ map annotations. GeoJournal 72, 3 (2008), 215–227.
[23] Lawrence Philips. 1990. Hanging on the metaphone. Computer Language 7, 12

(1990), 39–43.

[24] Anand Rajaraman and Jeffrey David Ullman. 2011. Mining of massive datasets.
Cambridge University Press.

[25] TUG 2021. Geohash. Retrieved May 7, 2021 from https://www.movable-type.co.

uk/scripts/geohash.html

[26] TUG 2021. Introduction to HDF5. Retrieved May 7, 2021 from https://portal.

hdfgroup.org/display/HDF5/Introduction+to+HDF5

[27] TUG 2021. Points of Interest SWG. Retrieved May 7, 2021 from https://www.ogc.

org/projects/groups/poiswg

[28] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.

2019. HuggingFace’s Transformers: State-of-the-art natural language processing.

arXiv preprint arXiv:1910.03771 (2019).

https://doi.org/10.1109/TIT.1983.1056714
https://www.movable-type.co.uk/scripts/geohash.html
https://www.movable-type.co.uk/scripts/geohash.html
https://portal.hdfgroup.org/display/HDF5/Introduction+to+HDF5
https://portal.hdfgroup.org/display/HDF5/Introduction+to+HDF5
https://www.ogc.org/projects/groups/poiswg
https://www.ogc.org/projects/groups/poiswg

	Abstract
	1 Introduction
	2 Motivation and Contributions
	3 Other Related Works
	4 Mining PoI Polygons: System Design
	4.1 Vocabulary Pre-processing
	4.2 Add2Vec Model training
	4.3 Specialised Address Pre-processing
	4.4 Generating Address Embeddings
	4.5 PoI Polygon Mining

	5 Evaluation of the Algorithm
	6 Polygon Correction Using OSM Building Footprints And Roads
	7 Discussion
	8 Conclusion
	References

